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Abstract

The integrable third-order Korteweg—de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion
for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces danghtire
of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, non-local,
normal-form transformations introduced by Kodama in combination with the application of the Helmholtz-operator. These
Kodama—Helmholtz (KH) transformations are used to present connections between shallow water waves, the integrable
fifth-order KdV equation, and a generalization of the Camassa—Holm (CH) equation that contains an additional integrable
case. The dispersion relation of the full water wave problem and any equation in this family agree to fifth order. The travelling
wave solutions of the CH equation are shown to agree to fifth order with the exact solution.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We study the irrotational incompressible flow of a shallow layer of inviscid fluid moving under the influence of
gravity as well as surface tension. Previously, Dullin efl#t] studied the case without surface tension, which in the
shallow water approximation leads to the Camassa—Holm (CH) equation. CH is the followidggliadratically
nonlinear equation for unidirectional water waves with fluid velogity, 1),

my + comy + UMy + 2muy + Ty = 0. Q)

Herem = u — o®ux is @ momentum variable, partial derivatives are denoted by subscripts, the constants
I/co are squares of length scales and= /gh is the linear wave speed for undisturbed water at rest at spatial
infinity, whereu andm are taken to vanish. The limi€ — 0 recovers the Korteweg—de Vries (KdV) equatj@f].
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Eqg. (1)was first derived by using asymptotic expansions directly in the Hamiltonian for Euler’s equations for
inviscid incompressible flow in the shallow water regime. It was thereby shown to be bi-Hamiltonian and integrable
by the inverse scattering transform in the work of Camassa and IHjlnits periodic solutions were treated by
Alber et al. (se¢1,2] and references therein). BefdBd, families of integrable equations similar(tb) were known
to be derivable in the general context of hereditary symmetries by Fokas and Fuchg&igindowever,Eq. (1)
was not written explicitly, nor was it derived physically as a water wave equation and its solution properties were
not studied beforgs]. Seg18] for an insightful discussion of how the integrable shallow watgration (1yelates
to the mathematical theory of hereditary symmetries.

Eqg. (1) was recently rederived as a shallow water equation by using asymptotic methods in three different
approaches by Fokas and [[iLb], Dullin et al.[12] and also by Johnsd@3]. These three derivations used different
variants of the method of asymptotic expansions for shallow water waves in the absence of surface tension. We shal
derive an entire family of shallow water wave equations that are asymptotically equivateqt {b)at quadratic
order in the shallow water expansion parameters. This is one order beyond the linear asymptotic expansion for the
KdV equation. The asymptotically equivalent shallow water wave equations at quadratic order in this family are
related amongst themselves by a continuous group of non-local transformations of variables that was first introducec
by Kodamg24,25]

Dullin et al. [12] focused on the integrability dig. (1)and its spectral properties. Its derivation from Euler’s
equation in the case without surface tension was briefly described. Here we present the necessary details of thi
calculation. The present derivation also adds surface tension. In view of the many papers which have appearec
recently on weakly nonlinear shallow water models (ji6,23]) we see our contribution to be the following.

By combining a non-local Kodama transformation with the application of the smoothing Helmholtz operator,
we derive several integrable water wave equations in the same asymptotically equivalent family. This family in-
cludes the CHequation (1) the fifth-order Korteweg—de Vries (KdV5) equation and the equation of Degasperis
and Proces|[9] which was recently discovered to be integrabld1fl]. All these integrable equations are then
explicitly related to each other, again by means of a Kodama transformation. We clarify the differences among
the previous derivations of these equations. The equations are discussed with respect to their linear dispersiol
properties.

In the context of water waves subject to surface tension, interest has recently focused on the KdV5 equation anc
its solitary wave solutions. Sd&1] for a review. For Bond numbers 8 o < 1/3 it has been shown that these
solutions are not true solitary waves which decay to zero at spatial infinity but instead tlyepexadized solitary
waveswhich are characterized by exponentially small ripples on their tail. See for ex@dhfide more explanation.

It has been shown by Lombarf#i8] that these ripples are exponentially small in term&of 1 whereF = ¢/co

is the Froude number. Numerical experiments by Champneys[&} alggest that in the full nonlinear water wave
problem there are no real solitary waves bifurcating for Bond humberss0< 1/3. For a rigorous proof, see

[32]. For Bond numbers larger than 1/3, one obtains depressions with negative velocity, rather than elevations with
positive velocity.

One may ask whether yet another model equation is needed, if the more rigorous, exact, or numerical results
described above are already available. Or in more general terms: Which is preferred? An exact solution of an
approximate model equation, or an approximate solution of an exact equation? Our point of view is: If the added
cost is small, why not take both? It might be useful to have an equation that gives, e.g., more accurate travelling
waves than KdV, without the need to go to much more elaborate models. Although we shall obtain less information
and accuracy than the sophisticated, beyond-all-order methods, we shall also pay less. Thus, one can improve th
description of the shape and speed of the travelling wave without having to resort to these more complicated models
That they are still only an approximation to the true solution is, of course, taken for granted.

Our inclusion of surface tension has a similar motivation. Altho&gh (30)that we shall derive has some
drawbacks concerning the global properties of its dispersion relation fordaitgsill gives improved descriptions
for smallk and small-. Moreover, the improved solutions are easily obtained and analyzed.

The Kodama—Helmholtz (KH) transformation developed here can be useful not only in the context of water
waves, but also in the many areas of science where the KdV equation appears as a model.
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Outline. Section 2recalls the standard dynamics for the shallow water wave elevation following Wh[B&im
We then use an approach based on the Kodama transformation to Eeri¢l8 with surface tension isection 3
Section 4explores the transformations employed to derive water wave equations. We discuss the class of equations
which may be related to each other via such transformation, and are, hence, asymptotically equivalent. As examples,
we discuss the relations &fg. (1)to KdV and other integrable equations. We particularly discuss the relations to
KdV5, the fifth-order integrable equation in the KdV hierarchy, and to another integrable nonlinear equation recently
proposed by Degasperis and Pro¢8%iand discovered to be integrable[ir0]. Section Scompares the dispersion
relation of(1) with that of the full water wave equation. FinalBection 6shows that the travelling wave solutions
of (1) agree to fourth order with the exact travelling waves solutions of the full water wave problem.

2. Then equation

Our derivation ofEq. (1) proceeds from the physical shallow water system along the lines of WhiBan
Consider water of depthh = hg + n(x, f), wherez = —hg is the flat bottom andg the mean depth, so that= 0 at
the free surface in equilibrium. Denote by andu, the horizontal and vertical velocity components, respectively.
The z-momentum equation is

DMV 1 hXX

=—g—-9 with p=6—-—"F——, 2
Dr 57 %P P = n2)32 )
whereyg is the constant of gravity anglthe surface tension. At the free surface, the boundary condition is
D
F:] =uy, Wherez=nrn. 3)

The irrotational velocity(x, z, 1) = Vg has horizontal and vertical velocity componems= ¢, anduy = ¢,. The
velocity potentialp must satisfy Laplace’s equation in the interigg. (3)yields the kinematic boundary condition
at the free surface,

N+ Oxnx = @z-
Eq. (2)can now be integrated to yield the dynamic boundary condition,

@+ E(sox +¢7) = —gh— ;n

The equations for a fluid are non-dimensionalized by introdugirgl,x’, z = ho/, t = (Ix/co)t’, n = an’ and

¢ = (dlya/co)¢’, whereco = +/ghp. Being interested in weakly nonlinear, small-amplitude waves in a shallow
water environment, we introduce the small parametets:/ ho ands? = (ho/l)? wheree > §% > €2 > €52 > §*.

When we talk about the linear approximation we lump together the terms oreadds?, because they are allowed

to be of the same order. Similarly, quadratic order means quadratiarids2, hence includes terms of orde,

€82, 8%, Contrary to this convention the traditional designations third- or fifth-order KdV refer to the power of

and hence also the maximal number of derivatives in the linear terms. Upon omitting the primes and expanding the
pressure term up to ordets?, the Euler equations and the boundary conditions at the free surface and at the bottom
are expressed as,

52§0xx+<pzz=0 in —1<z<en, 4)

1
M+ €y = ;= 0 atz=en, (5)

1, 5, €
nte+ 5 (0l + 5

5 (pf) — 08 =0 atz=en, (6)
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9. =0 atz=-1, ()

whereo = &/(hopcg) is the dimensionless Bond number.
Itis well known that variable transformations of the water wave problem yield the following decoupled equation
for the elevationy,

e+ Bemn -+ §8°(L = 30) oo — §€Mn n + €6%(55(23+ 150)naes
+ %2(5 — 30)nmx) + 543%0(19— 300 — 45‘72)77xxxx>< -0 ©

The derivation up to this order appears, for examplg28i, or more recently irf23] without surface tension.
Related systematic derivations of higher-order longwave equations were der[@8ilih

3. Transformation to an integrable equation

Before embarking on its derivation, we shall discuss the transformation propergs(@f First, itis reversible,
i.e., itis invariant under the discrete transformatian, r) — —u(x, —1). EqQ. (1)is also Galilearcovariant. That
is, it keeps its form under transformations to an arbitrarily moving reference frame. This includes covariance under
transforming to a uniformly moving Galilean frame. Howe\y, (1)is not Galilearinvariant, even assuming that
the momentumyz, Galileo-transforms in the same way as veloaityin fact, Eq. (1)transforms under

t—t+1g, x — x+xo+ct, u— u-+c-+uo, m— m+c+ug 9
to the form
my +umy + 2u,m + (co + uo)my + 2u,(c + ug) + Ny = O. (20)

Thus,Eq. (1)is invariant under space and time translations (consigrasdr), covariant under Galilean transforms
(constantc), and acquires linear dispersion terms under velocity shifts (consganThe dispersive termom,
introduced by the constant velocity shify # 0 breaks the reversibility dtq. (1)

Under scaling transformations ef r andu, the coefficients oEg. (1)may be changed. However, such scaling
leaves the following coefficient ratios invariant,

Cluyixy) - ClUly) = 2 : 1, (12)
Clux)C(uly) : ClUlx)C(uy) =3 : 1, (12)

whereC( f) stands for the coefficient gf in the scaled equation. It is pertinent to mention that the above ratios are
crucial in the integrability oEq. (1) See[5,12] for discussions of this point.

Eqg. (1) will emerge as being asymptotically equivalentEqg. (8) after two steps. First, we shall perform a
near-identity transformation

n=n() = u + effu] + 8glul, (13)

relating the wave elevation and a “velocity-like” quantity,One should not regardas the original fluid velocity,
because we will use a non-local term frwhich is difficult to interpret in this context. Instead, we considers

an auxiliary quantity in which the equation becomes particularly simple. The quantityees at leading order

with the fluid velocity and it transforms as a velocity under time reversal, spatial reflection and Galilean boosts.
To obtain the physically more meaningful quantjtpne has to transform back, see below. The functiofissd

g in the transformatioif13) are to be chosen so that they generate the terms proportiona|,to, iy, Ulxky and

uxxx IN EQ. (1) Afterwards, we shall apply the Helmholtz operatdr= 1 — v828§, which generates they: term.

As in [24] the functionalg[u] is proportional touyx and f[u«] is a linear combination ofi2 and a non-local term
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u,d~1, whered—! denotes integration over Thus, including the parameterthere are four coefficients in this KH
transformation. These shall be chosen so Htat(1)emerges, after a rescalingmfx andz.
With these choiceg,13) becomes the Kodama transformation, which depends on three parameterandp,

n=nu)=u+ e(oru® + aoud 1u) + 52,3uxx. (14)
Terms of degree in the expansion parametessand 82 start contributing at degree + 1 in the transformed
equation. Therefore, no terms of quadratic orderamds? are needed in the transformation. Inserting the Kodama
transformatior(14) into Eq. (8)for the height field; leads to the following terms in asymptotic order:

OQ):  us+ uy,

O(e) :  2a1uu; + 201UUy + otz(uxta_lu + uxxa_lu + uxa_lu, + uuy) + %’uux,

O 1 Puxg + upx(B+ & — 30),

(9(62) : galuzux + %az(uzux + Ulyd u + uia_lu) — guzux,

O@Es?) : (53 + 30 + 381 + 202)(1 — 30) + $Pusitx + (F5 — 50

+ (201 + 302) (1 — 30) + 3B)Ulon + ger2(1 — 30)tr0xd u,

0@ 1 (B —30) + 555(19— 300 — 4502))uyo00cx. (15)
As before, we expand the time derivatives to linear order as

Uy = —Uy — %euux — %82(1 — 30) txxx, (16)

Uyt = —Uyxx — %eu)zc - geuuxx - %82(1 — 30) i x00x» Uyt = —Uyxx — %euxuxx - %euuxxx. a7)

This expansion generates higher order terms, leading to

O(l) . Ur + Uy,

O :  Suu,,

0@ 21— 30U, (18)
0 Gax+ 3o — uluy, (19)
O@€8%) : Auyugg + BUlgy, (20)
0% 1 55519 — 300 — 450%) o, (21)

where in(20) we defined
A=8+20+212u+0a)(1-30)—-38 and B= 5 — 30+ sa2(1—30).

The first step of the derivation is now complete. In the second step, applying the Helmholtz opesatbr usza§
introduces the coefficiemtand creates terms with two morelerivatives. However, the terms of ord@¢e?) are left
unchanged. These terms are proportionat%o, and they must vanish fdq. (1)to emerge. Thus, the application
of the Helmholtz operator restores the needggdterm that had previously been eliminated. Alternatively, the same
Eqg. (1)can be obtained by splitting the time derivative, that is, by partially substituting the time derivggive
(15) by its asymptotic approximatiorf$7), along the lines of Benjamin et 48] in their study of the BBM equation.
The orderO(e?) coefficient in expressiofil9) will vanish, provided the parametesg anda; are chosen to
satisfy

day + 200 = 1. (22)
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The order® (5% terms receive an additional contribution that arises from applying the Helmholtz opé&fator
1 — 18292 to the terms of orde®(5%). The entire combination at ordé¥($*) must vanish, for the final equation to
possess no fifth-order derivative termyyxx. This requirement determinesas

_119—300 — 4502
"~ 60 1-30 '
In what follows, we shall consider the coefficianto be given by this function of surface tensien,Note: this

removal of the highest order term was made possible by introducing the additional parariatdre Helmholtz
operator. The remaining terms containing free parameteasid 8 are of ordeks? and they combine additively as

(23)

(A — %v)uxuxx + (B — %’v)uuxxx.
To ensure equivalence {&) except for scaling we need the relative coefficients to appear in theg(tdficso that

A-3n:(B-3n=2:1 (24)
In addition we also need to satisf§2), so that

%v:(f?—%v):?::l
These two conditions imply = 2v andA = 11v/2. As a result we finally obtain the equation

Uy — v82ux + tx + %euux — %eézv(uuxxx + 2uuxx) + 82(% —v— %a)uxxx =0, (25)
which can be rewritten in terms of = u — v52ux as

1

my +my + Se(umy + 2muy) + §2 (% — 20) Uy = 0. (26)

Thus, the coefficients in the Kodama transformatibf) that yield this equation are
7 1 2-3¢

_r_ 1 , 27

17207 75(1=30)2 @7)
1 22-3

_ 1.2 , 28

0= "5 T o5 3002 (28)
1 117-30

= __ o 2

F=30"30 1-3 (29)

Returning to physical variables, whereandg, have units ofja/co = coa/ ho, followed by an additional scaling
of u — 2u, giveskg. (26)the canonical CH form,

m; + comy + Uumy + 2muy + Ty = 0, (30)

in whichm = u — vhus andI” = coh?(1 — 30)/6. The parameters® and " in CH (1) are now understood in
terms of physical variables as

1 19— 300 — 452 coh?
2

—_— I'=——(1-30). 31

60 1-30 6 ( ) (31)
The parametel” changes sign when the Bond numlecrosses the critical value, 1/3. For later reference, we
record the value of > 0 for whicha? vanishes, as

0y = —3 + £+/30~ 0.39696> 3. (32)

a®=vh?=h

In the special cas& = I = 0, Eq. (30)is called “the peakon equation”. This equation supppetkons as solitary
wave solutions whose derivative is discontinuous at the extremum. These solutions were introduced and discusse
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by Camassa and Hol{B]. The peakon equation has many exceptional mathematical properties that arise from its
interpretation as geodesic motion in the Euler—Poincaré variational framework, as expld&d kfowever, the

peakon equation cannot be derived as a water wave equation in a weakly nonlinear shallow approximation from
the Euler equation by the present technique. This is because neither a Galilean transformation, nor an appropriate
splitting can eliminate both of the linear dispersive term&@q (30) simultaneously. One is always left with a
residual linear dispersion.

Johnsorj23] has recently derived the dispersive @guation (30as a shallow water wave equation by using the
same asymptotic expansion. However, two key steps in the asymptotic derivation are addressed in quite different
ways in[23] and here. Firstly, the ratios of the coefficients of the equation must be adjusted to ensure integrability.
In [23], this is achieved by using the height at which the velocity potential is evaluated as a free parameter. Instead
of the height, we use the free parameters in the Kodama transfornfaéipto obtain the desired ratios.

Secondly, the fifth-derivative termx of order@(s*) must be removed. The present approach allows the value
of the free parameterin the Helmholtz operator to be chosen to cancel out this terrf23h this term is simply
omitted. InSection 4we shall use our approach to show that the CH equation is asymptotically equivalent to the
KdV5 equation, which involves this fifth-order derivative.

In order to compare predictions in terms of physically measurable quantities, the solutions for the velocity-like
variableu must be transformed back to the elevation figly using(14). However, the derivation not only used
the transformatior{14), it also involved applying the Helmholtz operator. Therefore, one should verify that it is
sufficient to simply inver{14). Fortunately, when the inverse transformatioa= u(n) of the same form agl4)
with u andn interchanged is substituted into the filk@]. (26) we find that the coefficients just reverse their signs.

We 4conclude thafl) is equivalent to the shallow water waeguation (8)up to and including terms of order
O(8%).

4. TheKH transformation

In the previous section, we transformed the shallow water wguation (8)nto the CHequation (1y means of
a Kodama transformatigii4) and an application of the Helmholtz-operator. Now we describe the class of equations
that can be derived from the shallow water waggiation (8by any such sequence of transformations, which we
will refer to as KH transformation. This class contains (at least) four integrable equations, one of which is the CH
equation. Moreover, all equations in this class are not only relaté);tthey are also related to each other by such
transformations and are therefore asymptotically equivalent.

Similar transformations have been used by Fokas and150i that included an additional term of the form
XUy, but no Helmholtz-operator. In this case, the class of equations even includes the (third order) KdV equation.
Unfortunately, though, this term is not uniformly bounded, so we shall decline to use it. Its unboundedness is a
problem when transforming travelling wave solutions which move towardst-co. Moreover, use of the termu,
changes the dispersion relation.

4.1. Invariance of the dispersion relation

The Kodama transformatidii4) does not change the dispersion relation. To see this, one may observe that only
terms linear iny or its derivatives produce linear terms in the transformed equation. Similarly, apigldndo
nonlinear terms in an equation produces only nonlinear terms in the transformed equation. Therefore, in proving
invariance of the linear dispersion relation uniet), we may restrict to a transformatign= u + ¢L () in which
L is a linear differential operator with constant coefficients and the linear equation to be transformedif(n).

To first order, we then hawg = M(u) and the full transformation gives

u; +eL(uy) = M(u + eL(un)).
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Now the first-order equation may be used to eliminate the time derivatives which are not of order zero, thereby
yielding

u; +eL(M)) = M(u) + eM(L(u)).

If M and L commute, as they always do when they have constant coefficients, the final ansywer i87(u).
Consequently, the Kodama transformatftd) leaves a linear equation unchanged. Note that includinguterm
in the transformation would in general cause the operators to no longer commute, so that the dispersion relation
would be changed, as previously claimed.

The second step of the transformation is the application of the Helmholtz opéfatot — v828§. As we have
just seen, the Kodama transformation leaves the linear part of the equation unchanged. Applying the Helmholtz
operator to an equation does change the linear part, but it still leaves the dispersion relation unchanged. To see this
let the linear part of the equation be given by= M(u). The new equation i$/(u;) = H(M(u)). If H and M
are linear with constant coefficients this givlgu), = M(H(u)) so that with the definitiom = H(u) we obtain
m; = M(m), which has the same dispersion relation. This does not hold, however, if we truncate higher order terms
in H(M(u)). If we truncate, then the dispersion relation will agree up to the order of truncation. For example, the
dispersion relation fo(1) is a rational function, which differs from the polynomial dispersion relation obtained
from (8). However, by the above argument the two dispersion relations agree up to the desired order.

4.2. Range of the KH transformation

We now investigate which equations may be transformed into each other by a KH transformation. The class
of equations that (under some additional conditions to be derived) may be transformed into each other by KH
transformations is given by

FQug, ux, txo, Uxxts Uxooox, UUy) =+ G(uzux’ Ulex, Uxtxx) = 0, (33)

whereF andG are linear and the coefficients of, u,, Uu,, uxx are non-zero. This means that each equation has
a KdV-kernel. In addition, we assume that the terms are ordered as in the previous section: Eagryeight
and everyx (or ¢) derivative has weight. However, for simplicity, we do not explicitly display the weights in the
following, even though they are used for truncation at the usual order. The general procedure consists of two parts.
In the first part the coefficients iR are normalized in three steps. In the second part the Kodama transformation
is used to adjust the terms @. The details of the calculation are similar to those of the previous section and are
therefore not given.

Equations are considered to be equivalent when they differ only by a transformation of the form

(t, x,u) — (tt, &x — kt, vu). (34)

Scaling ofu, #, and the equation allow one to set the coefficients,ofu,;, anduu, to arbitrary non-zero values.
After such a scaling, the equation takes the form:

Up + Uy + Uy + f3Uxex + fattxxt + fstxoox + gluzux + goUlxx + g3t xtixx = 0. (35)

The next step is to remove thgy term by eliminating the derivatives using the equation itself. This operation
produces an equation of the form,

Uy s+ Wi+ (f3 = fouoc+ (fs = fa(f3 = fa)) oo + 816
+(82 — fa)Ulhox + (83 — 3fa)uxuxx = 0. (36)
In the third step, the coefficients Bf« anduxxxx are normalized usin{B4) again, while keeping the coefficients

of u;, uy, uu, all fixed at unity. First is used to normalize the ratio between the coefficientsyaf and v yxxxx
to +1, assuming that both are non-zero. The relative sign of these coefficients cannot be changed. Dividing the
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equation byt allows both coefficients to be set to unit magnitude. In order to keep the other coefficients in the linear
function F equal to unity, the special transformation of the fdi34) reads(z, x, u) — (tt, &x + (v — &)t, &u /7).

The above three steps (transformat{@#) to find (35), elimination ofuxy to find (36) and again transformation
(34)to find (37)) can be performed for any equation in the clé&3). Therefore, we shall only be concerned with

the equivalence under Kodama transformation of equations of the form

U+ uyx + }6uux + }SMXXX + }5'4xxxxx + g’luzux + g2UUxxx + g3uxitxx = 0, (37)

wherefs = 1, f3 =1, or 0, andfs = +1, or 0. f3 = 0 appears wherfs = f4 in (35). The parametefs is kept in
the notation to trace the influence of ting, term. The terms in the linear functignare unchanged by the Kodama
transformation because such linear terms are unchanged by a near identity transformatiopianitie lowest
order nonlinearity. Therefore two equations can only be equivalent if their normalized coefficegiees. Recall
thatuxy has already been eliminated, so that if, e.g., the above steps are applied to the CH equation, the resulting
equation does possess a non-zero fifth derivative term.

The terms in the linear functio@& in (33) can be adjusted by the Kodama transformation. This generates coeffi-
cients,

21=3(g1+ fo(201 + 2)), 22= g2+ 3wz f3, 23 = g3+ 3f3(201 + a2) — 2B . (38)

The g; are linear in the coefﬁment@l, a2, and B of the Kodama transformation. A sufficient condition for the
solvability of this linear system |§$3f6 # 0. Hence, if the coefficients ofwx anduu, in (37) are non-zero, then

any value ofg; can be achieved by some Kodama transformation. Since the coefficieat of (33) is assumed

to be non-zero the only additional conditionfis = f3 — fa # 0 in (35). Note that this condition was already
necessary in order to obta{87). For example, any equation with positive relative signfefand fs in (37) is
equivalent to the water wawesquation (8with o = 0. In particular, this shows that the integrable KdV5 can be
obtained, se§7]. Similarly, different higher-order, but non-integrable, extensions of the KdV equation can also
be obtained, e.g., those introduced by Champneys and Gi@lvésotice that the relative sign gf and f5 in (37)

is negative for 13 < o < oy, see(32). The conditionfz = 0 appears for = 1/3, while f5 = 0 for o = o,

~ 0.39696.

To arrive at equations with &y term, the Helmholtz operator is applied. The Helmholtz operator fits nicely
into the above procedure, because it is the inverse of the elimination afgthterm, at the order considered.
More precisely, if the Helmholtz 0perator—1f48§ is applied to(36) thenEq. (35)is recovered. Therefore, each
of the three steps leading to the normalized f¢8¥) can also be inverted, and any two equations with eqyal
are asymptotically equivalent. The CH equation ifgs= sign(e®I), even thoughfs = 0 originally. Moreover,
fa = sign(I, so that the relative sign is that@f. From these equations, it follows that the vanishing-pimplies
the vanishing offs. This is not true in the water wave equation. Thatisz 1/3 does not make the coefficient of
uxxox Vanish. This explains why the CH equation is not a good modet fer1/3.

In general, all the terms in the linear functighin Eq. (33)may be removed by a Kodama transformation.
However, it is not possible in general at the same time to remove the fifth-order derivative. One may, however, trade
the fifth-order derivative for theyy term. Therefore, possibly the simplest representative equation in th§8Bss
has the form:

Us + Uy + UUy + uxxx + Kyt = O,

where small positive/negative gives the different signs fofs. The case with positive results from the BBM
equation of Benjamin et a[3] by a Galilean transformation and velocity shift (which is not included in the
transformation grou34)). It is known that the BBM equation is not integrable. Thus, the integrable CH equation
arises as a KH near-identity transformation of the non-integrable BBM equation, after a Galilean transformation
and velocity shift.
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4.3. Examples

4.3.1. Asymptotic equivalence of CH and KdV5 equation

The previous section constructs a transformation from the water wave equation to the CH equation. The general
argument of this section shows that it is also possible to transform the CH equation, for example, into the KdV5
equation. To this end, we first expand the time derivative ingleterm using the equation itself and then apply a
transformation of the form

U = v+ e(a1v?® + arv,0 ) + 82 Bux. (39)

Choosing the values in this Kodama transformation as
2 2
o o
= —, = 2—’ = 2 2, 40
o1 =5 az T B o (40)

transforms the CHequation (1)nto the integrable KdV5 equation

> 150%v%v, 2
vy + covyx + vy + B(vvxx + 20, v + > T + INa“veoox + V) = 0. (42)
We conclude thafl) is asymptotically equivalent to the integrable KdV5 equation, and both of them are equivalent
to (8) at order®(8%). However, the equivalence ¢f) to the KdV5 equation breaks down in the limiit — 0,
because both the transformation and the resulting equation are singular in the limid. Therefore, the peakon
equation cannot be transformed into KdV5.

Using the additional parametesupplied by the Helmholtz operator allows for the removal of the highest order
term while preserving the dispersion relation, which is unchanged by applying a linear operator to the equation.
One advantage of the CH equation over the asymptotically equivalent KdV5 equation is that it is numerically easier
to integrate because it does not contain the fifth derivative. This is in accordance with the general smoothing effect
of the Helmholtz operator.

Different variants of higher order KdV equations have been derived in the literature. In this context, we mention
[6], who obtained a fifth-order KdV equation by expanding the variational formulation of the water wave problem.
Again, their equation is asymptotically equivalent to CH by a certain Kodama transformation. From our point
of view, however, the virtue of the power of the Kodama transformation is that it allows one to select integrable
equations as the model equation. The equation derivfg] is not known to be integrable.

4.3.2. Asymptotic equivalence to the b-equation
Recently a new variant ¢fL) has been introduced by Degasperis and Prdégsis

m; +um, + bu,m = couy — iyxx, (42)

whereb is an arbitrary parameter. The cages= 2 and 3 are special values for this equation. The ¢ase 2
restricts it to the integrable CH equation. The chse 3 is the DP equation of Degasperis and Prof@siwhich
was shown to be integrable [@0]. The two cases CH and DP exhaust the integrable candidaté$2pas may
be shown using either Painlevé analysis, agl 0], or the asymptotic integrability test, as[@]. Theb-family of
equations (42)vas also shown if80] to admit the symmetry conditions necessary for integrability only in the cases
b = 2 for CH andb = 3 for DP.

We shall show here that the new integrable DP equation can also be obtained from the shallow water eleva-
tion equation (8)oy an appropriate Kodama transformation. The derivation in the previous section is essentially
unchanged up t&q. (24) The two scaling relationél 1) and (12now read

A-3:B-3v=b:1 H:B-3v=>b+1:1
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These two conditions imply
- 3b+2 -
B=v— + and A=v§4b+3.
2b+1 2b+1

The resulting Kodama transformation of the fofia) with coefficientsy}, o, andg’ are

b — 24502 4+ 300 — 19
b+1 360 '

Therefore, any # —1 can be achieved by an appropriate Kodama transformation. Note thatonhesy,, see
(32), thena? = 0, henceA = 0 is independent df. After this transformatiorf42) is obtained by further scaling
the new dependent variableby the factorb + 1. See[22] for discussions oEq. (42)in which b is treated as a
bifurcation parameter whery = 0 and/” = 0.

The valueb = —1 is excluded, not from a deficiency of the KH transformation, but because theitgris not
removable in the linear functiof in Eq. (33) As we have shown above, the KH transformation does not affect this
term, and so it cannot be removed from thequation (8) That is, the casé = —1 is not within the range of the
KH transformation.

We conclude that the detailed values of the coefficients of the asymptotic analysis at quadratic order hold only
modulo the KH transformations, and these transformations may be used to advance the analysis and thereby gain
insight. Thus, the KH transformations may provide an answer to the perennial question “Why are integrable equations
found so often, when one uses asymptotics in modeling?”

oy = a1+ 34, oy =ap — 64, B =B—(1-30)A, where A =

5. Dispersion relation

The interplay between the local and non-local linear dispersion in thedCidtion (30)s evident in the relation
for its phase velocity,

w Ik?

k=0T Tra%2
for waves with frequency and wave numbek linearized arounad = 0. ForI” < 0, short waves and long waves
both travel in the same direction. Long waves travel faster than short ones (as required in shallow water), provided
I' < 0. Then the phase velocity lies in/k € (co — I'/a?, co]. At low wave numbers, the constant dispersion
parameters and I" both perform rather similar functions. At high wave numbers, however, the paraafeter
properly keeps the phase velocity of the wave from becoming unbounded, and the dispersion relation is similar to
the original dispersion relation for water waves, provided that the surface tension vanish@sThe remarkably
accurate linear dispersion properties closg to 0 give the CH equation a clear advantage over the KdV equation
(providedo is not close to 1/3, sefeig. 1).

For the peakon equationy = I" = 0 and linear dispersion is absent. For non-vanishing surface tension, the true
dispersion relation for shallow water waves is unbounded for large wave numbers, whereas the dispersion relation
of Eq. (1)saturates to the asymptotic valege— I7a?.

Consequently(1) is inferior to KdV5 for non-zero surface tension, with respect to travelling wave solutions
exhibiting small tail waves. Unboundedness of the linear dispersion relation of KdV5 for high wave numbers allows
resonances to occur between a supercritical solitary wave and high-wavenumber linear waves. These resonance:s
give rise to exponentially small ripples at the tails of the solitary wave, in accord with the water wave solution
of the full Euler equation. See, for examgdig11,20,28]for more discussion and analysis of these fascinating
resonances. Nonetheless, travelling wave solutions of CH and KdV5 are asymptotically equivalent, and they both
agree asymptotically with travelling wave solutions of the full water wave problenfeeton 6

The connections to the physical parametets «(o) andI” = I'(o) are defined irquations (31)The asymptotic
equation (30)was derived from the water wave equation by means of the KH transformation. As explained in

(43)
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Fig. 1. Normalised dispersion relations tor= 0.0, 0.25, 0.35, 0.8 as a function k. The full line is the exact phase spe@a); the dashed
line is the approximatio3) and the short dashed line is that of KdV5.

Section 4.1 the dispersion relatiofd3) matches the dispersion relation for water waves up to quintic order. In
comparison, the dispersion relation for water waves, when developed for small wave ruyrdids

w 1+ oh?k?

— = | == tanhhk 44
cok \/ hk oo (44)
w

v 11— 30)1h%k? + 555(19— 300 — 4502 h*k?, (45)
2~ 1 11— 30)h2AA — vk ). (46)
cok

Therefore, the dispersion relations are in agreement up to fifth order in dimensionless wavehkinktoerthe
particular valuer ~ 0.069, the dispersion relations agree up to seventh order.
6. Travelling wave solutions

One may also ask how the solutiongaf. (1)compare to the usual KdV solitons and to real water solitary waves.
An expansion of the form of the travelling wave in the full Euler equations is given by Grimgi#dwnd to higher
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order by Fentori13].} Recent results lik§28,32]indicate that the problem of existence and uniqueness of solitary
waves for the true water wave problem (even witl= 0) are very subtle. In the following we merely present a
formal argument, and just claim agreement of our soliton solution witliatmeal solution of the Euler equations
up to the ordeeq?. The result given iffi19] is normalized so that the highest point of the wave 2t0 is unity.

By direct substitution of a series in sédhto (26), one finds

u(s) = aseclfbs + 2ea? sectibs,

whereb? = 3ae/(45%) ande = 1+ea/2+(19/40)e2a? in s = x—ct. Applying the (inverse) Kodama transformation
gives

n(s) = a(1+ 1ea) secfbs + 3ea® sectibs.

For simplicity, we restrict the calculation to the case without surface tensiong i2.0. After normalizing the

height at the crest to unity, we find perfect agreement up to amfewith the exact result by Grimshaf9].

This shows that the travelling wave solutions(bf agree with those of the exact Euler equations up to the order
we are considering, which is the optimal result. In particular, the travelling waves are narrower and slower (in this
normalization) than the KdV soliton, in agreement with experimental findings of Weidman and Maxy@4thy

The solution also agrees with the one foundidii] by solving the fifth-order KdV equation.
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